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A Comparative Study in Cone Met\r/ilc Spaces and Cone Normed Spaces
Dua’a Abdullah M(?li/ammad Al-Afghani
Supervisor
Dr. Abdallah A.Hakawati

Abstract
Cone metric spaces are, not yet proven to be generalization of metric
spaces. In many occasions the answer was proved, not to be affirmative.
In this thesis we made a comparison between( Cone Metric Spaces and
Cone Normed Spaces) and ( Ordinary Metric Spaces and Normed Spaces)
as a way to find an answer for our main contribution.
We choose the most important branches of mathematics to make a
comparison as in: convergence, topology and best approximation theory.
We also tried to transplant the idea of cone metric spaces in Orlicz’s
spaces.
We obtained new results while we investigate some properties which were

proven to be incorrect in cone metric spaces but hold in ordinary case like

as Sandwich Theorem, which gives us a sense of generality here.



Introduction

Cone metric spaces were defined in [1] by substituting an ordered normed
space for the real numbers, by the means of partial ordering “ < “ on
Banach space ( E, I . ') via a cone P, The authors of this article and in [6],
introduced the notion of cone normed spaces, where bounded linear
operators between cone normed spaces were studied. It has been proven in
[3] that every cone metric defined on a Banach space is really equivalent to
a metric.

Recently, in [8], the authors proved that cone metric spaces are also
topological spaces. Moreover, compactness, boundedness, first
countability were discussed there.

This thesis is organized as follows:

Chapter one contains definitions and some examples which shall be needed
in the following chapters. The topics include cones, cone metric spaces and
cone normed spaces. This chapter is absolutely fundamental. A reader who
is familiar with these topics may skip this chapter and refer to it only when
necessary.

Chapter two has two purposes. First, we present some examples in cone
metric and cone normed spaces and investigated them deeply to find out
more properties of these spaces. Second, we introduce some properties of
cone metric and cone normed spaces.

In chapter three we made a comparison between cone metric spaces and
cone normed spaces and metric spaces and normed spaces in three

branches; namely: convergence, topology, and best approximation.
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In chapter four we introduce finite dimensional cone normed spaces, and
make a comparison between these spaces and finite dimensional normed
spaces, where genuine match were found. Also we try to give a definition
of Orlicz’s cone normed spaces by trying to insert the idea of cone metric
in Orlicz spaces.
The main results of this thesis are:

1) We conclude that Sandwich Theorem holds in cone metric spaces if
and only if the cone P is normal, and we provide a proof for this
result.

2) We introduce a proposition that the comparison test holds in cone
normed spaces if and only if the cone P is normal, and prove it.

3) We make a comparison between finite dimensional normed spaces
and finite dimensional cone normed spaces, and find a noticable

match in results under the condition that P is a normal cone.



Chapter One

Preliminaries and definitions
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Chapter One

preliminaries
This chapter contains some definitions and basic results about cones, cone
metric spaces, normed spaces and cone normed spaces which will be used

in the subsequent chapters.

1.Cones:

Definition 1.1:[1]
Let E be a real Banach space with norm | . I and let P be a subset of E. then
P is called a cone if:

1) P is closed, nonempty and P # {0}.

2) Ifa,b>0,and x,y € Pthenax + by € P.

3) If x e Pand —x € P then x = 0.

Definition 1.2: [1]
Let P be a cone in E. we define a partial ordering < with respect to P on E
as:
1) x<yifand only ify —x € P.
2) X<yifx<ybutx #y.
3) x LK yify—x € P°. (P° is the interior of P).
Examplel.1:[1]

Let R>=E, and P= { (x, y): x>0, y>0 }. P is indeed a cone.



Definition 1.3:

There are many types of cones, here we mention some of the frequently
used ones:

1) normal cones:

P is called normal if 3 k > 0, such that:

If 0 <x <y, then | x| <k Iyl The least such k is called the normal
constant of P.

2 ) regular cones :

P is called regular if every increasing sequence in E, which is bounded
above, is convergent. Equivalently, the cone P is regular if and only if
every decreasing sequence in E which is bounded from below is
convergent in E.

3 ) minihedral cones:

P is called minihedral if sup {x, y} exists for every x, y € E.

4 ) strongly minihedral cones :

P is called strongly minihedral if every set which is bounded above has a
supremum.

5) positive cone of E:

Let (E, <) be an ordered vector space, then E* = { x € E: x>0 } is called
positive cone of E, members of E* are called positive elements of E, the

non-zero elements of E* are called the strictly positive elements of E.



Definition 1.4:

The norm | . I'is called monotonicif VX, y€E, 0<x<y=IxI<lyl.
and called semi-monotonic if V x,y € E, 3 k>0, such that
O<x<y=IxI<klyl .

Example 1.2:[11]

Let E = CA[O, 1], be the space of real valued functions on [0, 1] which have

continuous derivatives, with the supremum norm

(1S :r[r&zﬁ({f €EE} andP={feE:f>0}

Then P is a cone with normal constant of K =1,

Example 1.3:[9]

The cone [0, o) in (R, |.]), and the cone P={(x, y): x, y> 0} in R? are

normal cones with normal constant K = 1.

Examplel.4:[9]

Let E be the real Banach space, R?, with the cone
P={(x,0):x>0}.So P isa positive cone of E , P has an empty

interior.

Examplel.5[12]:

Let E = C3[0, 1], be the space of real valued functions on [0, 1] which

have continuous second derivatives, with the norm

I f1=1floo+1f looand the cone P = {f € E: f (t) > 0}.

this cone is not normal cone, and not minihedral.

Examplel.6:[12]

Let E=R?and P ={(X, y): X, y > 0}. The cone P is strongly minihedral in

which each subset of P has an infimum.



Examplel.7:[12]
let E = RZ and P ={(x, 0): x > 0}. The cone P is strongly minihedral but

not minihedral.

Lemmal.l:[11]

Every regular cone is normal.

Proof:

On the contrary, let P be a regular cone which is not normal.

For each n > 1, choose t, and s,€ P such that t,-s,€ P,

but n? Ity | < ls, .

For each n> 1, put x, = ”% and y, = %:” , SO Xn, Yn and y,- Xn € P,
lyal=1 and Ixnl > n?, for all n>1.

The series 2;7;1% Iyl = Z?f=1n—12 is uniformly convergent, by Wierstrass-
M test, thereisy e Ps.t Yo7 n—12 Yn =Y.

We now see that :

1 1 1
0§X1SX1+2—2X2§ X1+2—2X2+3—2X3§.....Sy.

l

. . 1 . .
Because P is regular, the series Z?’f=1§ Xn IS convergent. Hence, lim

n—oo n2
=0,
which is a contradiction.
Now according to examplel.2 consider the following sequence of elements
of E which decreasing and bounded from below but is not convergent in E.

y>yr>yi>yi> > 0.

therefore, the converse of lemmal.l is not true.



Lemma 1.2:[11]

There is no normal cone with normal constant K<1.

Proof:

Suppose on the contrary, that E is a Banach space, and P is a normal cone
with normal constant K< 1.

Takex € P,x#0 and 0 <g <1, where K<(1-¢).

Then, (1-e) x < x

but (1-¢) I x I > K I x I, which is a contradiction.

2. Cone metric spaces:

Definition 2.1[1]:
A cone metric space is a pair ( X, d ) where X is any set and d:X* X — E
Is a map , with the following satisfied :
DdXx,y)>0Vx, y eXandd (x,y)=0iff x=y.
2) d(x,y)=d(y,x) Vx,yeE X.
3yd(x ,y)<d(x,2)+d(z,y) Vx,y,z€e X.
Example 2.1:[12]
let E=R? and P={(x, y): X, y> 0}, X=R, and d:X*X—E such that
d(x, )= (| x-y|, a|x-y|) where a > 0 is a constant, then (X, d) is a cone
metric space.
Example 2.2[12]
Let E = R" with
P={(X1, X2, X3,....., Xn) : x; >0, Vi=1,2,....,n}

X =R and d: XxX—E such that
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d (X, ¥Y)= (|x-y|, a1| X -yl,..... ,an1 | X- y|). where a;> 0 for all

| <i<n-1, Then (X, d) is a cone metric space.

Example2.3:[12]

Let E = C2[0,1] with the supremum norm and

P={feE: f(t)>0}.

Then P is a normal cone with normal constant K = I. Define
d: XxX—E by d(x, y)=|x—y| ¢, where X=R, and

¢: [0,1]—R* such that ¢(t) = e'. Then d is a cone metric on X.

Definition 2.2[1]:
Let (X ,d) be a cone metric space and {x,, }be a sequence in X, then:
1) {xn} issaid to be convergentto x if V e >> 0,
3 no € N such that n > ng = d(x,, x) <<e.
in this case we write x,,— X.
2) {x, } is called a Cauchy sequence in X whenever for every e >> 0
there is ng s.t for all m, n >ng ,d(x,,x,,) <<e.
3) (X, d) is called a complete cone metric space if every Cauchy

sequence is convergent.

Definition 3.2[8]:
A subset A of a cone metric space (X, d) is called sequentially closed if

for every sequence {x,,} € A, with x,,— x we have x € A.
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Definition 4.2[8]:
A subset A of a cone metric space (X, d) is called sequentially compact,
if for any sequence{ x, } in A there is a subsequence{ x,,, } of {x, }such

that{ x,, } is convergent in A.

proposition 2.2[8]:
let (X, d) be a cone metric space. Then every sequentially compact subset
A € X is compact.

For the proof, we refer the reader to [8].

Definition 2.3:[6]
Let (X, d) be a cone metric space and A € X, Then:
1) Aissaid to be bounded above if 3e € E, e >>0s.t
d(x,y)<<e Vx,yeA.
2 ) Ais called bounded if 6 (A) =sup {d(x,y) X,y € A} exists in E,
thus if P is strongly minihedral, then being bounded is the same as being

bounded above.

Proposition 2.2:[6]
Every Cauchy sequence in a cone metric space over a strongly minihedral

cone is bounded.

3. Cone Normed Spaces:

Definition 3.1:[10]

Let X be a linear space over a field K, a norm on X is a function
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I.1: X — Rsuchthat Vx,y €eXanda €K, we have :
1) Ixl>0andIxI=0iffx=0.
2) I x+yl<Ixl+yl.
3) lax1=|a|lxl.

A normed linear space (X, | .I') is a linear space X with anormon it.

Proposition3.1:[10]
1) Every normed space is a metric space with respect to the metric
d (x,y)=Ix—yl, and is called the metric induced by the norm.
2) For any two elements x and y of a normed space we have,
|IxI - Iyl | <Ix -yl

3) A norm is a real valued continuous function.

Definition 3.2[1] :

Let X be a real vector space and E be a real Banach space ordered by the
strongly minihedral cone P, then a cone normed space is an ordered pair
(X, I'.1c) where Il. I :X— E. such that :

1) Ixle>0and I x I, =0 iff x=0.

2) laxl.=|a|lxl.Va€e Randall x € X.

3) IX+yle<Ixl+Hyle.

Definition 3.4:[1]
In a cone normed space (X, I.Ic) over ( E, P, I.I') the sequence {X,} is said
to be:

(1) convergent if 3x € X s.t Ve € E with e >> 0, 3 ny € N such that
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vn>ng Il X-Xl.<< e.
(2) Cauchy if for each e >>0 3 ngeN s.t for m, n >ny we have

” Xn'Xm”c<<e.

Definition3.5[9]:
A cone normed space (X , IlI;) is called a cone Banach space if every

Cauchy sequence in X is convergent in X.

Definition3.6[16] : ( equivalent cone-norms )
Let X be a real vector space, P is a normal cone with normal constant k,

I ll,: X—Eandl.l.: X — E betwo cone norms on X. | . ll; is said to
be equivalent to | . Il if there exist a, B > 0 such that:

alx N, <Ixlo<Blxlg,. For each x € X

Definition 3.7[ 9]:

Let (X, I . I ) be a cone-normed space, a subset A of X is said to be
bounded if sup {Ix-ylc:X,y € A}existsinE.

Example 3.1[13 ]:

Let X=R? P={(x,y):x>0,y>0} c R?and

I (X, y) lc = (ax|, Bly]), @ > 0, p > 0. Then, (X, I - Ic) is a cone normed

space over R?,
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Chapter Two
Examples and some properties



14

Chapter Two

Examples and some properties
This chapter presents some examples and some theorems on cone metric

spaces and cone normed spaces.

1.Examples:
One of our main contributions is to characterize a comparison satisfaction.
Specifically, we show that the Sandwich theorem holds if and only if P is

normal.

Example 1.1 [12]:
Let E = CA[0, 1], be the space of real valued functions on [0, 1] which have
continuous derivatives,P={X € E:x (t) >0 }. Let
IxI=1xlle +Ix" I, where I x I, = max {x(t) : te [0,1] }
and | x* I, = max{x (t) : t € [0, 1]}.
Letx (t) =t, y(t)=t* wherek>1.
Here 0<y<x Vte]|0,1]
Ix I=max {t:t€[0,1] } + max { 1:te [0,1] }
=1+1=2.
I'y | =max {t3:te [0,1] } + max { 2k t%*1: t € [0,1] }
=1+ 2k. So,
0<y<x but, lyl>klxl

Since k was arbitrary, P is not normal.
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Example 1.2[3]:
LetE=C[0,1],P={f€E:f(t)>0}and I fl=1fl.,.
Then P is a normal cone with normal constant 1.
Proof :
If f and g are bounded on a compact set, both are continuous.
Nowif0<f<gthen:Ifl.<Igl..

We conclude that the normality of the cone depends on the norm of E.

Example 1.3 [12]:

LetE=CL[0,1],P={XEE:x(t)>0},and I x I =1 x L+l x" I,
2n
Let Xa(t) = “—, yo(t) == where 0 <Xy <yn .

lim y,, =0, but

n—oo

I % | = max {- t € [0,1] } + max { 2 "L:te [0,1] }

1
=142
n

Hence X, doesn’t converge to zero.
It has been noticed in [12] that the sandwich theorem doesn’t hold in cone

metric spaces, and this is another example.

Example 1.4 [12]:
Let E=CA[0,1],P={XEE:x(t)>0},and I x I = I X ll o+ X ll.

Let xq(t) = 225000 - gng y, (1) = M@0

n+2 n+2
Clearly 0<xp<XntVYn.
Andlxl=lyl=1, Vn.

nowW, Xp+V,= 2 — 0
v AN yn_2+n

but X, doesn’t converge to zero.
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we see from these examples that the Sandwich theorem doesn’t hold in
non-normal cone metric spaces. This leads to the question:
If cones are normal, would we still have the same result?

The answer is negative. The proof will be given in proposition (1.1).

Example 1. 5:
Let E=CA[0,1],P={XEE:x(t)>0},

and | x | =1 x l.. (ourcone is normal)
2n

Let Xa(t) = “—, yo(t) == where 0 <Xy <yn .

n

lim y, =0, but

n—->oco
I x| =max {~-: te [0,1]}

~.
Ix,1—0 asn — oo .

Hence x, converge to zero.

Example 1.6:
Let E=C3[0,1],P={Xx€EE: x()>0},
and | x I =1x lloo. (our cone is normal )

Letxn(t)=¥+hz("t), and yn:%:‘;m)

Clearly 0<xp<xpty.

2
now, X+ - n — oo,
ow, n yn ot 0 as

I x I = max{ x,(t) : t € [0, 1]}.
= max { ———"2:te[0,1]}

2
= — —90 as n — oo.
n+2

thus X, converge to zero.



17

That is to say the Sandwich theorem holds here.

Example 1.7:
Let E=CA[0,1],P={XEE:x(t)>0},and I x | = x loo+l X" loo.

V>l letx(®) =22, yt)=2  where 0<xy<ys.
lim y, =0, but
n—-oo
| xn | = max {7 t € [0,1] 3 + max { 2 sin(nt) cos(nt) :t€ [0,1] }

n

= % +c. (c=max {2 sin(nt) cos(nt) :te [0,1] })

Hence X, doesn’t converge to zero.

So in this case Sandwich theorem doesn’t hold.
sin? nt

But, if I x I = x loo, then | x | = max { te[o0,1]}.

n .

1
Ixl==—0 as n — oo.
n

So Sandwich theorem holds here.

This gave us the motivation to introduce and prove the following theorem.

Theorem1.2:

In Cone-Normed Spaces, the Sandwich theorem holds if and only if the
cone P is normal.

Proof:

= suppose the Sandwich theorem holds and P is not normal.

Y n>1, chooset, and s, € P such that

Sp<tyn but n?lt,I<Ilsyl.

t
For eachn > 1, put Xp = -2 Yn=—-, here X,<yn.
s,y I s,y I

Andlxql=1, Iysl<—= forall n>1.

n2

So,lyn I -0 asn— .
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But I x, =1 for all n.
Which is a contradiction.
& Let P be normal.
Thus for 0 <xp<ynthereisk>1 st Ix,I<klyyl.
Let y, converge to zero.
ie lynl—0asn— .
since,0<Ix, <0 asn—oo
thus | X, I — 0 as n — oo, that is to say x, converge to zero.

Thus Sandwich theorem holds.

Example 1.8[12]:
LetE=Ci[0,1,P={y€E:y(t)>0},and Iyl =1y lootl y" loo.
this is not a normal cone.

Foralln>1andt € [0, 1] put
t(n—l)z tnz

_ _ 2

Xn () = (n-1)2+1 n2+1 and y, (¢) = n2 "
¢n?
So, 0< x,<yn and Sn(t) = 2713=1xk (t) =1- n2+1

Therefore, | sn-Sm =1 - I I - I
i n-=m m2+1 n2+1 * m2+1 nz+1 -
1 m?2

- m2+1  m2+1 -
For all m, n so {s,} is not Cauchy sequence, namely
Yr=q Xi (t) is divergent
But, Xr-q Vi (t) = Z,‘f:l% Is convergent.
It has been noticed in [12] that comparison test doesn’t hold for series in
some cone metric spaces.

The question here is, what would the result be if we impose normality?
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For the same example let | x | = | x loo, which makes P normal.
2 2

hus, | P
Thus, | sh-Sm 1= - )
> PN em m2+1 n2+1 °
1
= — — 0 asm,n— oo
m4+1

So the series) -, x, IS convergent, so comparison test holds for this

normal cone metric space.

Examplel.9:
Let E = C3[0,1], with the norm | x | = I x oo+l X" lloo.
andP={xe E:x(t)>0}.

Foralln>1andt € [0, 1] put,
an(t) — sin?nt ’ bn(t) — i

n2 n? '

so 0<a,< by.

Pan 2
lan 1= 12225 1+ 1 2 sin (nt) cos (nt) L.
=— +== (c=max {sin (nt) cos(nt) : t € [0, 1]})

Thus Y»—; a, (t) is divergent,
since | a, | doesn’t converge to zero as n — oo,
and Y.;°-4 b, (t) is convergent. Thus, the comparison test fails here .

For the same example let | x | = | x loo which makes P normal.
Then, l a, I =

sin?nt
los

n2

1
== — 0 asn— oo,
n

Thus Yo, a, (t) is convergent.
Hence comparison test holds for this example when the cone is normal.

Thus, again, we introduce the following proposition of ours.
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Propositionl.3:
In cone normed spaces comparison test holds if and only if the cone P is
normal.
Proof:
Suppose comparison test holds but P is not normal.
For each n > 1 take a,, , b, € P such that a,< b,

Butn?l b,l <l a,l.

For each n > 1, put anuz—"”, yn:”llj—"”, here X, <y .
here lynI=1, Ix,1>n? forall n>1. (1)

. 1 1 . . . .
The series Z‘,’{’:l; I yo I = 2510:1; Is uniformly convergent. Since P is

closed,

Thereisy e Ps.t Z%°=1%yn =y.

We now see that :

0Sx1SxI+ XS Xt Xo+ 5 XeS LS.

. . 1 .
Because the comparison test holds, the series Y.5—, — Xa IS convergent.

ey I
n2

Hence, lim

n—oo

=0, a contradiction to (1).

Conversely, suppose comparison test doesn’t hold.
For each n > 1 choose a,, , b, € P suchthat 0 <a, < b,.

Where Y-, b, is divergent but >, a,, iS convergent,
Thatistosay lim Ib,l =0andlim la,Il #0.

n—-oo n—-oo

Thus Sandwich theorem doesn’t hold here,

Therefore the cone P is not normal.
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Example 1.10 [12,11]:

let E be the real vector space:

E ={ax+ b: a, b € R; xe [.5,1] }, with the supremum norm
I. 1., = max{ | ax+ b | : x€[0.5, 1]} and P = {ax+b: 2a<0,b>0}.
So P is a normal cone in E with normal constant k >1,
Now, define:
f(xX)=-4x+20 and g (X)=-12x+22
Then f<g, since g(X)—-f(x)=-8x+2€P.

But, [ fI=f(.5)=18 and lgl=g(0.5)=16
thereforef < g butlfli>Ilgl.
It has been noticed in [12] that we can find two elements of normal cone
wheref<g but Ifl>1lgl.
We see here that this doesn’t agree with the normality with k =1, thus we
shall investigate this example analytically.

Is P normal?
The answer has been found in [11] as follows:
Let {a,X + b,, }n>1 De an increasing sequence which is bounded above in E.
then, there is an element cx + d € E such that:
a;X +by <a, X +b, <azX +b; <....<a,X+b, <cxtd. Vxe€[0.5,1]
Then :
{a}>1 and {bn}.>1 are two sequences in R such that:
b1 <b,<b3<....<d and a;>a,>az3>....>c.
thus {an}.>1 and {bn}.>1 are convergent by the monotone convergent

theorem .
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leta, —a andb, — b ,but
ax+ b € P, thus P is regular, hence normal.
But we are wondering, does ax + b necessarily belong to P?
Here we introduce this example, which agrees with the proof , but the limit

doesn’t belong to P.

Where {nT“ }>1 1S @ decreasing sequence of numbers which is bounded
below, and

{% } is an increasing sequence of numbers which is bounded above.
Here, y, —y1 = -%x+%e P, thus y, > y;.

But,%i_)rgoyn:x+165P.

Although lim y,, € P, but by the definition of regularity the cone P is
n—-oo

regular, thus is normal.
We see here that in a normal cone with normal constant k # 1, we find

two elements in P where f<g but [flI>1lgl.

Example 1.9[15] : (Cones may be non-minihedral )
LetE=CL[0,1], P={geE:g(t)>0},and I gl=1glooHl g lw.
Letf(x) =sinx and g(x)=cos x.BothfandginE.

but h =sup {f, g } doesn’t belong to E

Since h is not differentiable at% .

Example 1.10 [9] :
Let E = C3[0, 1] with the norm | f1 =1 floot+l f* oo and
P={feE:f(t)>0},



23

1-sinh(nt)

take x,, (t) = S0 x,, € E Vn.

And letd: EXE - P (i.e X=E) be defined as :

at.p = 170

Clearly d is a cone metric on X, and | x,, | = 1, so x,, doesn’t converge to
ZEero.

Now, we will show thatd (x,, , 0) — 0.

Let c >> 0 be arbitrary.

(so, cisanelementin P°,iec(t)>0 Vte[0,1])

The range of ¢ is bounded below,

Let 6, = inf {c(t): t € [0, 1] }.

Choose n, € N such that L < Jo.
24+n

Now V te [0, 1]andn > n, , we have

_ 1-sinh(nt)
CO-—x, (O)=ct) - ———
> 8, - 1 sinh(nt)
2+n 2+n
1 1
Efﬁo"___ >’60‘ >'0
2+n 2+n0

Since t was arbitrary, we have: c>>x, Vn2> n,.
So,d (x,,0)—>0 thus x, — 0.
We conclude from this example that if E = X and d is a cone metric on X

then convergence in the norm is different from convergence in d.
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2. Some properties of Cone Metric and Cone Normed Spaces:

Proposition2.1 [1]:

Every Cauchy sequence in a cone metric space over a strongly minihedral
cone is bounded.

Proof:

Suppose {x,} is Cauchy.

Fix e >> 0.

Choose ny € N such that m, n > no= d (x,,, x,,) <<e.

Lete =sup {e, d (x,,, x,): M, N <ne}.

e exists since P is strongly minihedral .

= d (x,, x,) <<e forallm,n.

So, {x,,} is bounded.

Theorem 2.1: (Translation invariance)
A cone metric space (X, d) induced by a cone norm on a cone normed
space (X, | . l) satisfies:

1) d(xta,yta)=d(xy)

2) d(ax,ay)= |a| d(x,y) Vx,y€ X and V scalara.

Proof:

We have d(x+a,yta)=Il(xta)—(y+a)lc=Ix-ylc=d (X,y)

d (ax, ay) = | ax- ay l.=l a(x-y)lc =| a| Ix-y I = | a| d(x, y).

we see in previous theorems that the translation invariance in cone

normed spaces is just the same as in normed spaces.
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Chapter Three

Comparative remarks
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Chapter Three

Comparative remarks

1. Convergence in cone metric spaces compared to convergence in
metric spaces :
In this section we compare some properties of convergence of sequences in

cone metric spaces with metric spaces, where we have the same results.

Theorem1.1 [1]:

Let (X, d) be a cone metric space with a strongly minihedral normal cone
P, then:

1) a convergent sequence in X is bounded and its limit is unique.
2)ifxnf> xandyni yin X, thend (Xn,yn) —d(x,y).

Proof:

1)Fixe>>0.

choose np € Nsuchthat Vn>no=d (x,, ,x) <<e.
Lete=sup{e,d(x,,x):n>no}

e’ exists since P is strongly minihedral cone.

Thend (x,, ,X) <<e foralln.

Thus x,, is bounded.

Assume that x,, ke w and x, ke z then we get
0<dWw,z)<dWw, x,)+d(x,,z) >0 asn—

=d(w, z) = 0.( by normality of P since the Sandwich theorem holds)
And the uniqueness w = z of the limit follows.

2 ) lete >>0 be given, let € > 0 be arbitrary
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Choose n, and n, € N such that :

(S
> << —— .
n>n;— d( Xp, X) o € and

nzmny— d(yn ) << g -

where k is the normal constant of the cone P.
take ny = max{n,, n,}.
for n>n,, we have:

d (X, y) =d (x, X) +d(X, y) + d(yp, Y)

= +—— e+d(Xy)

. €
2Kllell 2Kllell

= (X, yn) _ d (X Y)<<gme  Vnzn,.

By the normality of P we have:

1d(xn, y) _ d(x,y)ls——lel.K=€ Vnzn,

=1d(g, ) dExy)l—0.

= d (X, yn) > d (X, y).

This theorem has a classical copy in metric spaces.

Here, we introduce this example which agrees with part two of the previous

theorem.

Examplel.l :

Let E be the real Banach space R?, with the cone
P={(xy):x,y=>0;

And of course, here,we have, order (x;, y;) < (x,, y,) if and only if
x1<x; and y; <y,

Let X = R?and define d: X*X — E, as:

d ((c1, y1), (X2, ¥2)) = (00 | X1-X2 | , B | Y1Y2 | ) where a., > 0.

This indeed makes (X, d) a cone metric space.
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Suppose z,, = (x,, y,,) iIsasequence in Xand z = (x,y) €E
Then z,, — z if and only if x,, A X and y, iy.
Proof :
Suppose z,, — z, and let € > 0 be given.
Choose no € N such that n > ng = d (z,, 2) << (a€, BE)
Now forn>ng (o | Xp-X | , B | Vn-y | ) << (a€, BE). Now,
ae-a|xn-x|>0 and
BE-B|ym-y|>0 Vn>no.
1.e |xn-x |<E and |yn—y|<E Vn>ng.

R R
thus x, - x andy, V.

R R
Conversely, suppose x,, = X and y,, —=.

lete=(e1,e2)>>0 inR?

for % and %2 “thereisn; and n, € N such that

n2n1=>|xn-x|<% and |ym—y|<%2 V m>ny

let np=max {ny, n,}

for n >ng, we have

|zn—2 |=(@]|xn—x [.B [yn—y ) <<(er &)
Sincee; —a |xn—x | >0 ande,—f |yn—y | >0.
d(z,,2)<<e Vn>ny,

thus, zniz.

of course, this pointwise convergence is similar to that in R".
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Theorem 1.2 [1] :
Every convergent sequence {x,} in a cone metric space is a Cauchy
sequence.
Proof:
For any e € E with e >> 0, there is N such that V n, m > N
d(xn,¥) <<=, and d (xp, X) <<=.
hence, d (xy, x) < d(x,, X) + d(xp,, X) <<e.

therefore {x,, } is a Cauchy sequence.

Proposition 1.1[9] :

Let {y,} be a Cauchy sequence in a cone metric space (X, d),
suppose { y, } has a convergent subsequence y,, — Y
theny, —vy.

Proof:

Lete>>0,e € E.

There is ng € N such that V. m, n>no= d(y,,, y) << %e

We may choose np such that for n > no we have d (yy, , y) << % e.

Now, for n > nowe have:

d(Wn, ¥Y) <d Vs Y, ) +d( P, Y) =€

So, y,—Yy as n—ow.

We close this section by this lemma which gave us a match with the

classical case, but under the condition of normality of the cone P.
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Lemmal.l [1]:
let (X, d) be a cone metric space, P is a normal cone with normal constant

k, and {x,, } be a sequence in X, then :
1) { x,} converges to x if and only if lim d(x,,x) = 0.
n—oo

2) { x,} is a Cauchy sequence if and only if lim d(x,,x,,) = 0.
n,m—oo

Proof:
1) suppose{x, } convergesto x . V € > 0 choose e € E where
O<<e andK lel< €.
There is N, such that for all n > N d(x,,, X) <<e.
So that when n > N, I d(x,,, x) | <k lel < € .
this means d (x,,, x) — 0 when (n — o).
Conversely, suppose d (x,, x) — 0 when (n — ).
For e € E with e >> 0, there is 6 > 0 s.t
Ixl<d = e-x € P.
For this 6 there is N, such that Vn >N Id (x,, x) 1 <9,
So e-d(x,, xX) €EP’,s0 d(x,, X)<<e,
therefore {x,, } convergesto x .
2 ) suppose {x, } is a Cauchy sequence . V € > 0 choose e € E where:
e>0 andKlel<e.
Thereis Ne N, s.tforalln,m>N d (x,, x,,,) <<e.
Sothatwhenn,m>N, ld(x,, x,)I<klel<e€.
this means d(x,,, x,,) — 0 when (n, m — o).
Conversely, suppose d (x,,, x,,,) = 0 when (n, m — ).

For e € E with e >> 0, there is 8 > 0 such that:
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Ixl<d=e—-x€ P°.
For this 6 there is N, such that Vn,m>N Id (x,,, x,,,) 1 <90,
So e-d(x,, x,) € P, sod (x,, x,,) << e, therefore {x,, }is a Cauchy
sequence .
We conclude from all this that convergence in cone-metric spaces agrees

with the definition of convergence in metric spaces.

2.Topologies on Cone Metric Spaces
Just like any metric the cone metric d induces a topology. To do so we need

to introduce the following two lemmas.

Lemma 1.2 [8]:
Let (X, d) be a cone metric space with cone P and a real Banach space E.
then for each e € E with e >> 0 there is a real number € > 0 such that for

any X € Ewith I x | <€, we have x<<e.

Lemma 2.2 [8]:
Let (X, d) be a cone metric space. Then for each e;>> 0 and

e,>> 0, thereise>>0suchthate <<e;ande<<e,.

Theorem 1.2 [8] :

Every cone metric space (X, d) is a topological space.
Proof:

Let (X, d) be a cone metric space.

Forxe Xande>>0, letB(x,e)={y e X:d(x,y)<<e}
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Let B= {B(X, e): x€ X and e >> 0}, where B(x, e) is the usual ball of
center x and radius e. also, B is the usual base for our “ cone metric”
topology.
Call G open if V x€ G there is BEB suchthatx e B<S G .
This defines a topology on X,
1 ) ¢ is vacuously open , also X is open , since for any co€ P° choose
XEX,(s0cp>0);B(x,¢c0) EX.
2 ) let G; and G2 be open, and x € G1NG; be arbitrary so there is e; >> 0
and e;>>0suchthatx e B(x,e) € Gj,i=1,2.
By lemma (2.2) choose e >> 0 such that c; >>e and c,>>e
Now, xe B (x,e) € B (x, ¢1) N B (X, ¢2) € G1NG,.
Thus G1NG2is an open set.
3)let G ={ Gy acA } be a family of open sets ; and let x € UG be
arbitrary.
So there is ao€ A such that x € B(X, ¢) € Gg,
Pick e >> 0 such that x € B(X, €) € G,, < UG
Thus Ugeq G, 1S Open.
Therefore
the collection Tq4={G < X : G is open }Is indeed a topology on X.
Furthermore,

Any cone metric space (X, d) is Hausdorff, and first countable.

3. Metrizability of cone metric spaces:
Here we will show that every cone metric defined on a real Banach

space is really equivalent to a metric.
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Theorem 3.1[2]:
For every cone metric M : X X X — E there exists metric
m : X X X — R+ which is sequentially equivalent to M on X.
Proof:
Define m (x, y) = inf{lul: M (x, y) < u}. We shall prove that m
Is an equivalent metric to M. If m (x, y) = 0 then there exists {u,} such that
Il unl — 0 and M(X, y) <u, Vn. So u, — 0 and consequently for all c >> 0
there exists N & N such that u, << c forall n > N.
Thusforallc >>0, 0<M (X,y) << c.thatistosay x=Yy.
If x =y then M (X, y) = 0 which implies that m (X, y) <l u | for all 0 <.
Put u=0itimplies m(x,y)<I0l=0,
on the other hand 0 <m (X, y), therefore m(x, y) =0.
Itis clear that m (X, y) =m(y, X).
To prove the triangle inequality,
for x,y,z € X we have,
V&6>0 thereisu; st luill<m(x,z)+6 ,M(X, z)<ugand
Vo>0 thereisu; st lul<m(z,y)+6 ,M(z,y) < U,
But M (X, y) < M(X, z) + M(z, y) < u; + uy, therefore
mX,y)<lup+ud <lull+lud<m(x,z)+m(zvy)+ 20.
Since 6 > 0 was arbitrary som (X, y) <m (X, z) + m(z, y).
Now we shall prove that, for all {x,} & Xand x € X,
Xp — X in (X, m) if and only if x, — x in (X,M).
We have:

Vnmé&N duym suchthat | uyml <m (X, X) +mi, M(Xn, X) < Unm.
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Put vo=uUn then Iv,l<m (X X) +%
and M (X, X) < Vvn. Now if X, = x in (X, m) then
m (Xn, X) — 0 and so v, — 0, therefore,
for all c >> 0 there exists N & N such that v, << c for all n > N.
This implies that M (X, X) << ¢
for all n > N. Namely x, — x in (X,M).
Conversely, for every real 6 >0, choose c € Ewithc>>0and I cl <.
Then there exists N & N such that M (x,, X) << ¢ for all n > N. This mean
that for all 56 > 0 there exists N & N such that
d(Xn, X) <lcl<ys.
Since, by [2], mutual generations of metrics and cone metrics produce
sequentially equivalent topologies, the fact that both topologies are first

countable implies that they are the same topology. See [5].
4. Best Approximation in Cone Normed Spaces:

Introduction:

Let X =( X,I.Ic) be a cone normed space, G a subset of X, and X X,

An element go € G is called a best approximant of x in G if

I X -gole =de(x, G)=inf { I x-gl.: g € G}.

We see that for x € X a best approximant go € G is an element of minimal
cone-distance from the given X. such a go may or may not exist.

We shall denote the set of all elements of best approximants of x in G by

Pe(X, G) i.ep.(x,G)={geG:Ix-gl=dc(x, G) }.
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Examplel.4:
Take X= R? with the cone {(x, 0) : x >0}, with the usual metric on R
dx, y) = Y -y1) + (2 = ¥2).
Take G = {(x,y) : x=y, 0 <x < 1}, take X = (2,2),

Then G has no best approximant for x.
_, 1 1 1. :
Takey = (% ,0), then py= (5 : 5) IS a best approximant of x.

Definitionl1.4 [5]:

Let (X, I . lc) be a cone-normed space , and let G be a non-empty set in X,
and xe X, we say that go € G is a cone-best approximation of x if
IX—golc<Ix—gl.V ge G.we denote the set of best approximant of x in

G by Pe(x, G).

Definition 2.4 [5]:

Let (X, I. Ic) be a cone-normed space , and let G be a non-empty set in X,
for x € X, we define the cone distance

dc (x, G)=inf { | x — g lc : g € G }. The definition makes sense because
every subset of P has an infimum.

{-Ix—gl.: g€ G} hasasupremum and this is the required infimum.

The following theorem transforms word for word it’s dual from classical

approximation theory.

Theoreml. 4 [5]:
Let (X, I . Ic) be a cone normed space with a minihedral cone P and G a

subspace in X, then:
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1) do(y +g, G) = du(x, G) V Y€ X, g€ G.
2) de(X +y, G) <d¢(X, G) +do(y, G) Vx,y€X.
3)de(ay,G)= |a |d(y, G) VaER, y€E X,
4)1de(x, G) — de(y, G) < I x—y I
Proof:
1)letye X, ge G anda>>0.
Then by the definition of the infimum, there is go € G such that
ly — golc < dc(y, G) +a. so we have:
de (Y+ g, G) < ly+ g- (g+go)lc = ly-gole < dc (y, G) + a.
since X, g were arbitrary and by the minihedrality of the cone P, we get
that:
de (Yt g, G)<dc(y,G) V(YEX,GEG) ............ (1)
now, replacing y by y+ g and g by — g, we get:
dc(y, G) < de(y+ g, G) V(ye X,g€QG)............. (2)
combining (1) and (2) we get the equality.
2)letx,y e X,and e >>0, so %e>>0.
There is g1, g2 € G such that:
Ix — g1le < de(x, G) + g , and ly—galc<dc(y,G)+ % .
S0, de (x +y, G) < (x+y) — (91 + G2l

<Ix — gale + ly — gale

<dc(x, G) + > +ds(y, G) +~

=dc(X,G) +dc(y, G) +e.
Since e were arbitrary, we get that :

de(xty, G) <dc(X, G) + dc(y, G) .
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3) let ye X and B # 0 be any scalar, and let € >> 0.
Pick go€ G for which ly —golc < de(y, G) + |;+| .
So, d¢ (By, G) <IBy — Bgolc
= | B| ly —golc
< |B| du(x, G) +e.
Since e was arbitrary, d.(by, G)< |B| du(y, G) ....... (1)

Now, applying this relation to bx in place of x, and % in place of B, we

get that:

d.(y, G) =d; (ﬁ .Bx, G) < ﬁ d. (Bx, G) , and hence:

|IB| de(x,G) <de(cx,G) ............ Q)

Combining (1) and (2) gives | B| dc(x, G) =d¢ (BX, G) .

4) let x, ye X and lete >> 0.

Take go€ G so that ly —go Ic < dc(y, G) + e

S0, de (x, G) < I x —golc < Ix —y I+ Iy —go ¢
<Ix-yl.+d:(y,G) +e

Since e was arbitrary, d: (x, G) - dc (y, G) < Ix —y I..

Similarly, we get d; (y, G) - dc (x, G) < Ix —y I . thus,

Ide (Y, G) - de (x, G)lc < Ix —y I .

Once more, the next result stands firm, and as a mimic of what occurs in

the classical setting.

Theorem 2. 4 [5]:
Let (X, I . Ic) be a cone normed space with strongly minihedral cone P, and

G is a subspace in X. then:
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1)ifz € Gthen p(z, G) = {z}.
2 ) if G is not closed then p¢(x, G) is empty.
3) pc(X, G) is a convex set
Proof:
1) let z € G, then the cone-distance between x and G must be zero.
Thus, if g € pc(z, G) then d(z, g) = 0 =x=g.
2) Suppose that G is not closed.
Pick y € G\ G. thus, for each e >> 0, there is y,€ G s.t
ly—y,l.<e.
Since P is strongly minihedral, then
Iy —Ye lc=0,s0y =y,
which implies that y € G, a contradiction.
3) let pu=dc(x, G).
The statement holds if P¢(x, G) is empty or a singleton.
Suppose thaty, z € P(x, G) and y # z.
ForO0<a<l,letw=ay+ (1l —a)z, then:
IXx-—wle=lIx—(ay+(1-a)z)l
=lx-ay—(1-a)z+ox—ox |
=lax-y)+(L-o)x-2)l
<alx—-yl+(l-a)lx—zl
=opt+t(l-a)p
= .
Since G is a subspace of X, w € G, which implies that

n<lx-—wle.
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Therefore, | x — w I = L and so Pc(x, G) is convex.

Theorem 3.4:
Let G be a subspace of a cone normed space (X, I . I¢) , for x € X:
1) If z € P,(x, G) then az € P.(ax, G) for all scalar a.
2) IfzePe(x,G)thenz+g e P(x+g,G)forallg e G.
Proof:
for (1) ifg € G and a is a scalar # 0, we have:
lax—gle=|a | Ix-=gl>|a | IX-zl
=|ax —az ..
Thus az € P (ax, G).
For (2) if h € G we have:
Ix+g-—hle>Ix-zl.=Ix+g-(zt+g)l
Hence z + g € P¢( x+ g, G).
We close this chapter with the following true copy of the classical theory in

normed spaces.

Theorem 4.4 [5]:

Let (X, I . lc) be a cone normed space, and let G be a subspace of X, then
for any x € X,

1) pc(x, G) is a bounded set.

2 ) if G is closed then p¢(X, G) is a closed set.

Proof:

1) Leta € P(x, G).

lalc=la—x+xlc
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<la—-xlc+1Ixl
<l0-xl.+Ixl. (since 0 G)
=21IxI.€E.

So, pc(x, G) is bounded.
2 ) suppose that p = dc(x, G), and (a,) be a sequence in P¢(x, G) which
converges in (X, 1 .l.)toa.
Since G is closed then, a € G.
Now foreachn € N, I x —a, I, = .
But since the cone norm is continuous, then | x — g ¢ = M.
Thus, pc(x, G) is closed.
We see here that in the previous theorems on cone normed spaces we have

the same results as in normed spaces, in the sense of best approximation.
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Chapter Four
Finite dimensional cone normed spaces and

compactness in cone normed spaces
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Chapter Four

1.Finite dimensional cone normed spaces:
In this section we will consider the finite dimensional cone normed spaces,
and again we see that results in cone metric space match results in metric

spaces.

Definition:
Let (X, I . Ic ) be a cone normed space where the real vector space X is of
finite dimension. Then we say that (X, I . I ) is a finite dimensional cone

normed space.

Lemmal.l :( linear combinations)
Let {X1, X2, X3, ....... , Xn} be a linearly independent set of vectors in a cone-

normed space X ( of any dimension n) with a normal cone P. Then there is

e € E with e >> 0 such that for every choice of scalars ay, ...... , 0n We have
lay o+ oA xnle > (|au |+ 4| an|) e>>0.
Proof

Define S= (| ox [+...4 | on|)
IfS=0,thenq;=0Vi=12,....... , .

If S>0,thenla;x;+ ...... +a,x,lc >c .S isequivalent to
1B+ ... 4Bnxylc =, where B; = % with 37, | 8 |=1.
Now, by the normality of the cone we have:

kNByx+ ...... +Bxnlc 1 > 1 ¢ I, where k is the normal constant of P.

I cl IFcl
B2yt ... +fnXyle | > ——, where —=>0.
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Suppose that the statement is false.
Then there is y,, € X such that,
Ym = B X+ .. +By'xn.  Where }7_, |ﬁ]m | =1.
ly, Nl I — 0 as m — oo,
Since ¥7_; |ﬂ]m | =1, then, |ﬂ]” |<1.
Fixj, B/ = (B} B}, ... ,B]") is bounded in R,
then by Bolzano-Weiestrass theorem, ™" — f; ast — .
After n steps we obtain a sequence Y, ., = ( Yn1 s Ynz > ---- ) of ¥, Whose
terms of the form y,, ,,= ¥7_, ¥;" x; where }7_, | Y | =1.
With scalars y;™ satisfying Yi" — Bj as m — oo,
Hence as m — oo,
Ynm =Y = 2i=1Bj Xj
= | Iy, il — 11y 1.l by continuity of the norm.
Since Iy, Il — 0 by assumption and y,,, is a subsequence of y,, we
must have [ Iy, ,ll.I — 0.
Hence I | y ll.I = 0 this contradicts y # 0, and the lemma is proved.
Under the assumption that the previous lemma and its proof are correct we

introduce the following theorem.

Theorem1.1:

Every finite dimensional cone-normed space with a normal cone P, is
complete.

Proof:

Let { x,} be arbitrary Cauchy sequence in X, with dim X=n
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And {eq, e,, ...... , e, } be a basis for X.

Then V x,, € X, x,, = ai*e;+....talle, .
Since {x,} is a Cauchy, then for each 6 € E with 6 >> 03 ny; € N such
that V r, m> no, we have |l x,- x,,,Ic << 8.

From previous lemma we have:

§>> 1, — Xy e =1 3™ (af — aM™ele>c 3™, |al — a*| ,c>>0
(m, r>N).

§=cy, |af — o

By the normality of the cone P we have

I51k>1cIY™, |al — a™].

Division by I ¢ I > 0 gives

|- af | <3, o - of |<55 (m,r>N)
Thus, each of the n sequences ( al™) = (&}, a?, ....... )y i=1,...... ,n.
is Cauchy in R, Hence is converget.
Letx=a, e;+a, e;+....... +ay,e,. Where each a;denotes the limit of a".

Clearly x € X . furthermore,

12y - x 1= I (a™ —a) gl <¥%, |a™ —a; | el

On the right a" — «; .

hence | x,,— x | — 0, that is x,,— x.

This shows that {x,,, } is convergent in X, therefore X is complete.

Thus we conclude that every finite dimensional cone-normed space with a

normal cone P, is a cone-Banach space.
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Theorem 1.2:

Every finite dimensional subspace Y of a cone normed space X ordered
with a normal cone P, is closed in X.

Proof:

Let Y be a finite dimensional cone normed space ordered with a normal
cone P, then Y is complete. That is every Cauchy sequence in Y is

convergent in Y = Y is closed.

Theorem1.3: (its classical version occurs in [14,p75] )
On a finite dimensional cone normed space (X, Il . I ) , with a normal cone

P, any conenorm . Il is sequentially equivalent to any other cone norm

.

Proof:

Let X be a finite dimensional real vector space,

dim X =n, and basisfor X ={ ey, ...., en}

thenVx e X, X=a.e; +....... +a, e,.

so, thereisab € E, b >> 0 such that

Ixlle, >b(|ox|+....4 | an]|) . by the normality of the cone P.

KTl =101 (]og|+....4 | an]|), where k >0 is the normal constant.

On the other hand, the triangular inequality gives:
Ixl, <™ || e, <MY, | |, M=maxlel,,.
]

Again, by normality of the cone.

X, <IMIkE™, | a |
K20 Ml
bl

Together, I I x I, I<BI I xll. I, where B = >0.
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By an interchange of the roles of I . ll. and I . ll.,we get the inequality

ol 1l W< Tl I < B X N .

This shows that the convergence of a sequence in finite dimensional cone
normed space (with a normal cone P) doesn’t depend on the particular

choice of the norm of the space.

2. Compactness in cone normed spaces:

Proposition 2.2:
A subset M in a cone-normed space is bounded if and only if there is an
h>>0suchthatl x I, <hV x € M.
proof:
Let M be bounded, and suppose that
O (M) =supyyeul X—ylcexistsin E .
letd (M )=h.
fix Xo € M and set h="b +I xgl..
Ixlc=1x—Xo+Xole<Ix—Xolc+ I Xole
I x I < =b +l xolc = h.
Conversely, suppose that for some h >> 0.
Ixl.<hVxe&M.then,
IX-yl<Ixl+lyl.=2h.
Ix—yl.<2h,
and 6 (M ) <2h where h € E.
Thus M is bounded.
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Lemma 2.2:
A compact subset M of a cone metric space (X, d) is closed and bounded.
Proof:
For every x € M. There is a sequence X, in M such that:
Xn b X.
since M is compact, Xxe M.
hence M is closed.
If M is unbounded, it would contain an unbounded sequence (Yy).
Let m be any fixed element in M,
We may assume that d (y,, m) > n.
Yn cannot have a convergent subsequence, since a convergent sequence

must be bounded.

So M is bounded.

Theorem 2.1:

In a finite dimensional cone normed space X with a normal cone P, any
subset M<SX is compact if and only if M is closed and bounded.

Proof:

Compactness implies closedness and boundedness.

To prove the converse.

Let M be a closed and bounded set in X.

dim X =n, and {ey, e, ....., en}is a basis for X.

consider Xm In M, where,

Xm = afte;+ ayte,t ...+ alte,.
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Since M is bounded so {x,,}.

Leth>>0,h>lxy, =13 amelc>e X7, |a™ |

where e >> 0.

h>eX" | a” | , by the normality of the cone P

Ihik >Tel 7., | aj" | where k is the normal constant of P.
Hence the sequence of numbers a;" is bounded,

And by Bolzano-Weiestrass theorem, has a limit a; where 1<j <n.
We conclude that x,, has a subsequence z,, which converges to z
Wherez=3 a; e; .

Since M is closed then z € M.

The arbitrary sequence x,,, in M has a convergent subsequence in M.
Hence M is compact.

This shows that in any finite dimensional cone-normed space, with a
normal cone the compact subsets are precisely those which are closed and

bounded.

3.0rlicz cone normed space
Orlicz spaces are Banach spaces , and in order to study them,it is necessary

to introduce the definition of modulus function.

Definition 3.1[7]:
A function ¢: [0 ,00)—[0 , o) is called a modulus function if the following
are satisfied :

1 ) ¢ is continuous at 0 from the right and strictly increasing .

2)d(0)=0.
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3 ) ¢ is asub additive thatistosay d (x +y ) <d (X )+ b (y),
Vx,y€e[0,o©).

Examples of such functions are ¢ (x )=xP,0<p<1.

and ¢ (x)=In (1 +x).

Theorem 3.1[7]:

Every modulus function is continuous on [0,00 ) .

Definition 3.2[7]:

Let X be a real Banach space, and (T, W) be a finite measure space. For a
given modulus function ¢, we define the Orlicz space as:

L® (u, X ) = { £T-X: [ dUF (I, (t) <0} .

The function d: L® (u, X) * L? (u, X) — [0, ) given by:

d(f, 9) = [ o(If ) — g®ONd,(®) .

defines a metric on L (u, X).

For f € L® (u, X) we write I fly = [ &I ()N, (¢) .

Definition 3.3:
Let ( Q, F, n) be a measure space, where €2 any set, J the measurable sets
in Q, and p 1s a measure. And let E be a real Banach space, and P is a cone

in E. let 1 be a non-zero fixed element of P.
Let the indicator function I (w) = {3 ’ V‘;Zﬁ :

S0 Ia (w) is a function: Q — E.

A simple functions on w is one which takes 2 — E, and takes the form

s(W)=Xr_iaply, (W) ,where Vk=1,2,...... ,n.a, ER, A, €F.
k=1 k
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For a non-negative simple function s (a;, >0, V k)
s du=%gq a u(Ay) .
Suppose f> 0 is a measurable function: Q — E, let S¢= {s: s is a simple
measurable non-negative function Q — E with s (w) <f(w) Vw € Q }.
Jfdu=sup{[Sdu:seSs,}.
To ensure the well definition of this integral, we assume P is strongly
minihedral, f'is bounded in Q (i.e thereis z€ P s.t f{(w)<zV w € Q) and
that p is a finite measure.
Now, for arbitrary function f, let f*(w) = sup { f(w), 0}

f~(w) =sup { -f(w), 0}.

So that f (w) = f*(w) — f~(w), here we can define

Jfdu=[f*du-[fdu.

Definition 3.4 :

A function ¢¢: P —P is called a cone-modulus function if the following are
satisfied :

1) ¢ is continuous at 0 from the right and strictly increasing .

2) d(0)=0.

3) ¢ is a sub additive that is to say ¢¢ (x +y) < ¢ (x )+ dc (Y),

Vx,y€P.

Definition 3.5:
let E be a real Banach space ordered by a strongly minihedral positive cone
P, and (T, ) be a finite measure space . for a given cone-modulus function

¢bc, we define the Orlicz cone-normed space as:
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LY (WX)= {£: ToE: [ d (I f(O)l) dp<oo} .
Where Ifyle = sup { [ (I F(D)I) dp }.
= sup { [sdu: s is a simple measurable non-negative

function: T — E, with s(t) < (I f(t) Ic) }.
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